monero_primitives/unreduced_scalar.rs
1use core::cmp::Ordering;
2use std_shims::{
3 sync::LazyLock,
4 io::{self, *},
5};
6
7use zeroize::Zeroize;
8
9use curve25519_dalek::scalar::Scalar;
10
11use monero_io::*;
12
13// Precomputed scalars used to recover an incorrectly reduced scalar.
14static PRECOMPUTED_SCALARS: LazyLock<[Scalar; 8]> = LazyLock::new(|| {
15 let mut precomputed_scalars = [Scalar::ONE; 8];
16 for (i, scalar) in precomputed_scalars.iter_mut().enumerate().skip(1) {
17 *scalar =
18 Scalar::from(u64::try_from((i * 2) + 1).expect("enumerating more than u64::MAX / 2 items"));
19 }
20 precomputed_scalars
21});
22
23/// An unreduced scalar.
24///
25/// While most of modern Monero enforces scalars be reduced, certain legacy parts of the code did
26/// not. These section can generally simply be read as a scalar/reduced into a scalar when the time
27/// comes, yet a couple have non-standard reductions performed.
28///
29/// This struct delays scalar conversions and offers the non-standard reduction.
30#[derive(Clone, PartialEq, Eq, Debug, Zeroize)]
31pub struct UnreducedScalar(pub [u8; 32]);
32
33impl UnreducedScalar {
34 /// Write an UnreducedScalar.
35 pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
36 w.write_all(&self.0)
37 }
38
39 /// Read an UnreducedScalar.
40 pub fn read<R: Read>(r: &mut R) -> io::Result<UnreducedScalar> {
41 Ok(UnreducedScalar(read_bytes(r)?))
42 }
43
44 fn as_bits(&self) -> [u8; 256] {
45 let mut bits = [0; 256];
46 for (i, bit) in bits.iter_mut().enumerate() {
47 *bit = core::hint::black_box(1 & (self.0[i / 8] >> (i % 8)))
48 }
49
50 bits
51 }
52
53 // Computes the non-adjacent form of this scalar with width 5.
54 //
55 // This matches Monero's `slide` function and intentionally gives incorrect outputs under
56 // certain conditions in order to match Monero.
57 //
58 // This function does not execute in constant time and must only be used with public data.
59 fn non_adjacent_form(&self) -> [i8; 256] {
60 let bits = self.as_bits();
61 let mut naf = [0i8; 256];
62 for (b, bit) in bits.into_iter().enumerate() {
63 naf[b] = i8::try_from(bit).expect("bit didn't fit within an i8");
64 }
65
66 for i in 0 .. 256 {
67 if naf[i] != 0 {
68 // if the bit is a one, work our way up through the window
69 // combining the bits with this bit.
70 for b in 1 .. 6 {
71 if (i + b) >= 256 {
72 // if we are at the length of the array then break out
73 // the loop.
74 break;
75 }
76 // potential_carry - the value of the bit at i+b compared to the bit at i
77 let potential_carry = naf[i + b] << b;
78
79 if potential_carry != 0 {
80 if (naf[i] + potential_carry) <= 15 {
81 // if our current "bit" plus the potential carry is less than 16
82 // add it to our current "bit" and set the potential carry bit to 0.
83 naf[i] += potential_carry;
84 naf[i + b] = 0;
85 } else if (naf[i] - potential_carry) >= -15 {
86 // else if our current "bit" minus the potential carry is more than -16
87 // take it away from our current "bit".
88 // we then work our way up through the bits setting ones to zero, when
89 // we hit the first zero we change it to one then stop, this is to factor
90 // in the minus.
91 naf[i] -= potential_carry;
92 #[allow(clippy::needless_range_loop)]
93 for k in (i + b) .. 256 {
94 if naf[k] == 0 {
95 naf[k] = 1;
96 break;
97 }
98 naf[k] = 0;
99 }
100 } else {
101 break;
102 }
103 }
104 }
105 }
106 }
107
108 naf
109 }
110
111 /// Recover the scalar that an array of bytes was incorrectly interpreted as by ref10's `slide`
112 /// function (as used by the reference Monero implementation in C++).
113 ///
114 /// For Borromean range proofs, Monero did not check the scalars used were reduced. This led to
115 /// some scalars serialized being interpreted as distinct scalars. This function recovers these
116 /// distinct scalars, as required to verify Borromean range proofs within the Monero protocol.
117 ///
118 /// See <https://github.com/monero-project/monero/issues/8438> for more info.
119 //
120 /// This function does not execute in constant time and must only be used with public data.
121 pub fn ref10_slide_scalar_vartime(&self) -> Scalar {
122 if self.0[31] & 128 == 0 {
123 // Computing the w-NAF of a number can only give an output with 1 more bit than
124 // the number, so even if the number isn't reduced, the `slide` function will be
125 // correct when the last bit isn't set.
126 return Scalar::from_bytes_mod_order(self.0);
127 }
128
129 let mut recovered = Scalar::ZERO;
130 for &numb in self.non_adjacent_form().iter().rev() {
131 recovered += recovered;
132 match numb.cmp(&0) {
133 Ordering::Greater => {
134 recovered += PRECOMPUTED_SCALARS[usize::try_from(numb).expect("positive i8 -> usize") / 2]
135 }
136 Ordering::Less => {
137 recovered -=
138 PRECOMPUTED_SCALARS[usize::try_from(-numb).expect("negated negative i8 -> usize") / 2]
139 }
140 Ordering::Equal => (),
141 }
142 }
143 recovered
144 }
145}