monero_ed25519/unreduced_scalar.rs
1use core::cmp::Ordering;
2use std_shims::{
3 sync::LazyLock,
4 io::{self, *},
5};
6
7use subtle::{Choice, ConstantTimeEq};
8use zeroize::Zeroize;
9
10use monero_io::*;
11
12use crate::Scalar;
13
14/// An unreduced scalar.
15///
16/// While most of modern Monero enforces scalars be reduced, certain legacy parts of the code did
17/// not. These section can generally simply be read as a scalar/reduced into a scalar when the time
18/// comes, yet a couple have non-standard reductions performed.
19///
20/// This struct delays scalar conversions and offers the non-standard reduction.
21#[derive(Clone, Copy, Eq, Debug, Zeroize)]
22pub struct UnreducedScalar([u8; 32]);
23
24impl ConstantTimeEq for UnreducedScalar {
25 fn ct_eq(&self, other: &Self) -> Choice {
26 self.0.ct_eq(&other.0)
27 }
28}
29impl PartialEq for UnreducedScalar {
30 /// This defers to `ConstantTimeEq::ct_eq`.
31 fn eq(&self, other: &Self) -> bool {
32 bool::from(self.ct_eq(other))
33 }
34}
35
36impl UnreducedScalar {
37 /// Read an UnreducedScalar.
38 pub fn read<R: Read>(r: &mut R) -> io::Result<UnreducedScalar> {
39 Ok(UnreducedScalar(read_bytes(r)?))
40 }
41
42 /// Write an UnreducedScalar.
43 pub fn write<W: Write>(&self, w: &mut W) -> io::Result<()> {
44 w.write_all(&self.0)
45 }
46
47 fn as_bits(&self) -> [u8; 256] {
48 let mut bits = [0; 256];
49 for (i, bit) in bits.iter_mut().enumerate() {
50 // Using `Choice` here takes advantage of `subtle`'s internal `black_box` function, necessary
51 // as our MSRV doesn't allow us to use `core::hint::black_box`
52 *bit = Choice::from(1 & (self.0[i / 8] >> (i % 8))).unwrap_u8();
53 }
54
55 bits
56 }
57
58 // Computes the non-adjacent form of this scalar with width 5.
59 //
60 // This matches Monero's `slide` function and intentionally gives incorrect outputs under
61 // certain conditions in order to match Monero.
62 //
63 // This function does not execute in constant time and must only be used with public data.
64 fn non_adjacent_form(&self) -> [i8; 256] {
65 let bits = self.as_bits();
66 let mut naf = [0i8; 256];
67 for (b, bit) in bits.into_iter().enumerate() {
68 naf[b] = i8::try_from(bit).expect("bit didn't fit within an i8");
69 }
70
71 for i in 0 .. 256 {
72 if naf[i] != 0 {
73 // if the bit is a one, work our way up through the window
74 // combining the bits with this bit.
75 for b in 1 .. 6 {
76 if (i + b) >= 256 {
77 // if we are at the length of the array then break out
78 // the loop.
79 break;
80 }
81 // potential_carry - the value of the bit at i+b compared to the bit at i
82 let potential_carry = naf[i + b] << b;
83
84 if potential_carry != 0 {
85 if (naf[i] + potential_carry) <= 15 {
86 // if our current "bit" plus the potential carry is less than 16
87 // add it to our current "bit" and set the potential carry bit to 0.
88 naf[i] += potential_carry;
89 naf[i + b] = 0;
90 } else if (naf[i] - potential_carry) >= -15 {
91 // else if our current "bit" minus the potential carry is more than -16
92 // take it away from our current "bit".
93 // we then work our way up through the bits setting ones to zero, when
94 // we hit the first zero we change it to one then stop, this is to factor
95 // in the minus.
96 naf[i] -= potential_carry;
97 #[allow(clippy::needless_range_loop)]
98 for k in (i + b) .. 256 {
99 if naf[k] == 0 {
100 naf[k] = 1;
101 break;
102 }
103 naf[k] = 0;
104 }
105 } else {
106 break;
107 }
108 }
109 }
110 }
111 }
112
113 naf
114 }
115
116 /// Recover the scalar that an array of bytes was incorrectly interpreted as by ref10's `slide`
117 /// function (as used by the reference Monero implementation in C++).
118 ///
119 /// For Borromean range proofs, Monero did not check the scalars used were reduced. This led to
120 /// some scalars serialized being interpreted as distinct scalars. This function recovers these
121 /// distinct scalars, as required to verify Borromean range proofs within the Monero protocol.
122 ///
123 /// See <https://github.com/monero-project/monero/issues/8438> for more info.
124 //
125 /// This function does not execute in constant time and must only be used with public data.
126 pub fn ref10_slide_scalar_vartime(&self) -> Scalar {
127 use curve25519_dalek::Scalar as DScalar;
128
129 /// Precomputed scalars used to recover an incorrectly reduced scalar
130 static PRECOMPUTED_SCALARS: LazyLock<[DScalar; 8]> = LazyLock::new(|| {
131 let mut precomputed_scalars = [DScalar::ONE; 8];
132 for (i, scalar) in precomputed_scalars.iter_mut().enumerate().skip(1) {
133 *scalar = DScalar::from(
134 u64::try_from((i * 2) + 1).expect("enumerating more than u64::MAX / 2 items"),
135 );
136 }
137 precomputed_scalars
138 });
139
140 if self.0[31] & 128 == 0 {
141 // Computing the w-NAF of a number can only give an output with 1 more bit than
142 // the number, so even if the number isn't reduced, the `slide` function will be
143 // correct when the last bit isn't set.
144 return Scalar::from(DScalar::from_bytes_mod_order(self.0));
145 }
146
147 let mut recovered = DScalar::ZERO;
148 for &numb in self.non_adjacent_form().iter().rev() {
149 recovered += recovered;
150 match numb.cmp(&0) {
151 Ordering::Greater => {
152 recovered +=
153 PRECOMPUTED_SCALARS[usize::try_from(numb).expect("positive i8 -> usize") / 2];
154 }
155 Ordering::Less => {
156 recovered -=
157 PRECOMPUTED_SCALARS[usize::try_from(-numb).expect("negated negative i8 -> usize") / 2];
158 }
159 Ordering::Equal => (),
160 }
161 }
162 Scalar::from(recovered)
163 }
164}